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The ground-state energy of an N-polaron system confined to a quantum dot with a neutralizing background
charge is investigated within an all-coupling many-body path-integral variational principle taking into account
both Fermi statistics of polarons and the electron-electron interaction. The treatment of the ground-state energy
is performed for both closed- and open-shell systems. The average fermion density in the neutral spherical dot
is characterized by the Wigner-Seitz parameter rs. For a sufficiently large but finite number of polarons, the
dependency of the ground-state energy on rs is very similar to that for a polaron gas in bulk. From this, we can
conclude that the ground-state energy of a polaron gas in bulk can be qualitatively described using a model of
a finite number of polarons in a confinement potential provided by a neutralizing background charge.
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I. INTRODUCTION

Many-polaron systems are gaining increasing interest be-
cause polaron effects influence the thermodynamic and opti-
cal properties in high-Tc superconductors �see, e.g., Refs. 1
and 2�. Experiments on the infrared optical absorption of
high-Tc materials �see Refs. 3–5 and references therein� re-
veal features which are convincingly attributed to polarons.

In the present paper we address the problem of the
ground-state energy of a polaron gas, starting from consider-
ations on a system of a finite number of polarons in a quan-
tum dot.

It is well known that Feynman’s variational path-integral
treatment6 of a single polaron provides a superior analytical
all-coupling theory. However, the generalization of this ap-
proach to many polarons is far from trivial, not only because
of the Coulomb repulsion. A major problem is also the treat-
ment of the Fermi-Dirac statistics of the electrons. Even for
the bipolaron, up till now, stability study7 was limited to two
distinguishable electrons with opposite spin.

Some time ago, two of the present authors8 contributed to
a generalization of the Lee-Low-Pines transformation9 to the
N-polaron problem, which allows the problem �including the
statistics� to be treated in terms of the static structure factor
of the electron gas; the method was used in the Hartree-Fock
approximation. The method is variational, but the upper
bound to the ground-state energy is accurate only for suffi-
ciently weak electron-phonon coupling. Based on this ap-
proach, a weak-coupling theory was developed,10 taking into
account the static screening of the electron-phonon interac-
tion and using various approximations for the static dielectric
function. A different treatment of the ground-state properties
of a polaron gas at intermediate coupling was developed in
Refs. 11, using an effective self-consistent electron-electron
potential due to LO phonon exchange, with the parameters
determined within a variational approach.

For arbitrary electron-phonon coupling, we succeeded12,13

in generalizing Feynman’s variational approach to a finite
number of polarons in a quantum dot, to study the possible
occurrence of bipolarons, tripolarons, and multipolarons.
This method relies on the path-integral formalism for inter-
acting identical oscillators.14

Another extension of the Feynman path-integral varia-
tional method for a many-polaron system has been devel-
oped in Refs. 15–17, starting from the low-density regime,
where the particles localize due to the Coulomb repulsion
and form a Wigner crystal. When the coupling to the LO
phonons is turned on, the electron Wigner crystal is progres-
sively transformed into a polaronic Wigner crystal. In Refs.
15–17, the electrons are considered as distinguishable par-
ticles. This approximation is justified inside the solid phase,
where the overlap between the wave functions of different
localized electrons is negligible. In Ref. 17, the method15,16

was generalized, taking into account the Wigner crystal nor-
mal modes rather than a single mean frequency in the mini-
mization procedure of the variational free energy.

On the one hand, taking account of the Fermi-Dirac sta-
tistics of polarons is of particular importance at high density
of polarons where exchange effects bring a significant con-
tribution to their ground-state energy. On the other hand, the
formalism of Refs. 12 and 13 is not aimed at treating the
low-density limit or, in particular, at describing the Wigner
crystallization. The density range in which the approach of
Refs. 12 and 13 and that of Refs. 15–17 are adequate are
complementary to each other.

In the present work, we exploit the ideas and techniques
of Refs. 12 and 13, and treat the ground-state energy of a
system of N interacting polarons confined to a quantum dot
by a uniform spherical positive background charge which
exactly compensates the charge of the electrons. Indeed, if
we let the quantum dot with a neutralizing background have
a radius that tends to infinity, we have in practice a uniform
electron gas dressed with polaron effects. In this connection,
a quantum dot, in which confinement is provided by a neu-
tralizing background, can be a relevant model for a polaron
gas in bulk.

The paper is subdivided as follows. In Sec. II, the
N-polaron system under consideration is described. In Sec.
III, we determine the variational functional for the ground-
state energy of that system. In Sec. IV, we discuss the nu-
merical results and compare the ground-state energy and
various contributions to the ground-state energy of an
N-polaron system confined to a quantum dot with the corre-
sponding quantities of a polaron gas in bulk. In Sec. V, the
conclusions are presented.
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II. ELECTRON-PHONON SYSTEM

Consider a system of N electrons with mutual Coulomb
repulsion and interacting with the lattice vibrations. The sys-
tem is confined by a sphere of a radius R with a uniform
positive background charge density nb. The density nb is set
equal to the averaged electron density n0=N / �4�R3 /3�, such
that the quantum dot is electrically neutral. The density can
then be expressed in terms of the effective Wigner-Seitz pa-
rameter r

s
*, which is determined by the equations

4�

3
�r

s
*a

B
*�3 =

1

n0
, a

B
* =

�2

mb�e2/���
�1�

with the effective Bohr radius a
B
*, the band mass mb, and the

electronic �high-frequency� dielectric constant ��.
The total number of electrons is represented by N

=��N�, where N� is the number of electrons with spin pro-
jection �= �1 /2. The electron coordinates are denoted by
x j,� with j=1, . . . ,N�. Introducing the generalized electron
coordinate

x̄ = �x1,−1/2, . . . ,x− N−1/2,−1/2,x1,+1/2, . . . ,xN+1/2,+1/2� , �2�

the Hamiltonian under consideration is

H = �
�=�1/2

�
j=1

N� p j,�
2

2m
+ �

k
��kak

†ak + Vb�x̄� + VC�x̄�

+ �
�=�1/2

�
j=1

N�

�
k

�Vkakeik·xj,� + Vk
*ak

†e−ik·xj,�� , �3�

The potential energy from the Coulomb repulsion is

VC�x̄� = �
�,��=�1/2

�
j=1

N�

�
l=1

N��

�j,����l,���

e2

2��

1

�x j,� − xl,���

= �
q�0

4�e2

q2V
�	q	−q − N� , �4�

where 	q is the Fourier transform of the electron density
operator,

	q = �
�=�1/2

�
j=1

N�

eiq·xj,�, �5�

and V is the volume of the crystal.
The interaction energy from the background is

Vb�x̄� = �
�

�
j=1

N

Ub��x� j,�� + Vbb, �6�

where Ub��r�� is the electrostatic background potential of an
electron with position r. In the case of the uniform neutral-
izing background sphere described above, this potential en-
ergy is readily calculated, and is harmonic inside the sphere:

Ub�r� = −
4�e2nb

3�0

 �

3R2 − r2

2
for r � R ,

R3

r
for R � r ,� �7�

where �0 is the static dielectric constant. The constant term
Vbb is the potential energy associated with the electrostatic
interaction of the background charges with each other:

Vbb =
3

5

e2N2

�0R
. �8�

The electron-phonon interaction is described by the
Fröhlich model,

Vk =
��LO

ik
�4��

V
�1/2� �

2m�LO
�1/4

, with

� =
e2

�c
	 mbc2

2��LO
� 1

��

−
1

�0
� , �9�

with �LO the frequency of the longitudinal optical phonons
that are created and annihilated by ak

† and ak, and with the
electronic and static dielectric constants �� and �0, respec-
tively.

Observe that the usual unit of length ap of polaron theory
is given by

ap 
	 �

mb�LO
. �10�

Its relation to the effective Bohr radius is

a
B
*

ap

=
1 − 


	2�
, �11�

where 
 is the ratio between the high- and low-frequency
dielectric constants,

0 � 
 =
��

�0
� 1. �12�

Therefore, in terms of the number of polarons and the radius
of the background sphere, the parameter r

s
* can be rewritten

as

r
s
* =

	2�

1 − 


R

N1/3 . �13�

As shown in Ref. 13, the partition function of a system of
interacting polarons can be represented as the path integral
over the electron coordinates only,

Zp��N��,�� = �
P

�− 1��P

N1/2!N−1/2!

 dx̄


x̄

Px̄

Dx̄���e−Sp�x̄����,

�14�

with the action functional
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Sp�x̄���� = −
1

�



0

�� �− �
�=�1/2

�
j=1

N� mb

2
�dx j,�

d�
�2

− VC„x̄���…

− Vb„x̄���…�d� + ��x̄���� , �15�

and where �P denotes the sum over all permutations Px̄ over
the electron coordinates with the same spin component.
Throughout the present treatment, the Euclidean time vari-
able �= it is used, where t is the real time variable.

The “influence phase” of the phonons,

��x̄���� = − �
k

�Vk�2

2�2 

0

��

d�

0

��

d��



cosh��LO��� − ��� − ��/2��

sinh����LO/2�
	k���	−k���� ,

�16�

describes the phonon-induced retarded interaction between
the electrons, including the retarded self-interaction of each
electron.

The free energy of a system of interacting polarons
Fp��N�� ,�� is related to their partition function �14� by the
equation

Fp��N��,�� = −
1

�
ln Zp��N��,�� . �17�

In the zero-temperature limit, the free energy turns into the
N-polaron ground-state energy,

E0��N��� = lim
�→�

Fp��N��,�� . �18�

III. VARIATIONAL PRINCIPLE

At present no method is known to calculate the non-
Gaussian path integral �14� analytically. For distinguishable
particles, the Jensen-Feynman variational principle6 provides
a powerful approximation technique. It yields a lower bound
to the partition function, and hence an upper bound to the
free energy. It was demonstrated in Refs. 18 and 19 that
keeping the appropriate symmetry for a trial system �see the
discussion in Ref. 19�, the variational inequality for identical
particles takes the same form as the Jensen-Feynman varia-
tional principle:

Fp � F0 +
1

�
�Sp − S0�S0

, �19�

where S0 is a model action with corresponding free energy
F0. The angular brackets mean a weighted average over the
paths

��¯��S0
=

�
P

�− 1��P

N1/2!N−1/2!

 dx̄


x̄

Px̄

Dx̄����¯�e−S0�x̄����

�
P

�− 1��P

N1/2!N−1/2!

 dx̄


x̄

Px̄

Dx̄���e−S0�x̄����

.

�20�

In the present paper, we use a trial action in which the
background potential and the Coulomb interaction are simu-
lated by harmonic terms,

S0�x̄���� =
1

�



0

��

�
�

�
j=1

N� mb

2
�ẋ j,�

2 ��� + �2x j,�
2 ����d�

−
1

�



0

��

�
�,��

�
j=1

N�

�
l=1

N�� mb�2

4
�x j,���� − xl,������2d�

+ �0�x̄���� , �21�

with an influence phase of the form

�0�x̄���� = − C

0

��

d�

0

��

d��



cosh�� f��� − ��� − ��/2��

sinh���� f/2�
X��� · X���� ,

�22�

where X is the center-of-mass coordinate of the electrons,

X =
1

N
�
�

�
j=1

N�

x j,�. �23�

The trial action S0�x̄���� thus contains three variational fre-
quencies �, �, and � f, and the factor C which accounts for
the strength of the electron-phonon interaction. The diago-
nalization of this system results in four eigenfrequencies, say
�1 �the frequency of the relative motion of the centers of
mass of the electrons and the harmonic interaction field�, �2
�the frequency of the motion of the center of mass of the
model system as a whole�, w0 �the frequency characterizing
the coupling of harmonic interaction field to the electrons,
analogous to the frequency W in the Feynman polaron
model�, and w �the frequency of the motion of the electrons
in the relative coordinate system�, which are known func-
tions of �, �, � f, and C.

The oscillator setup of the trial action does not describe
some physical features which exist for a many-electron sys-
tem in a background-charge potential, such as Friedel oscil-
lations of the electron density. The Friedel oscillations do not
arise for a three-dimensional �3D� fermion gas in a parabolic
trap, although they exist, e.g., for a one-dimensional fermion
gas in a parabolic potential.20 The treatment of the spatial
correlations of the polaron density is beyond the scope of the
present work, because our particular interest is to investigate
the bulk limit of a homogeneous polaron gas �where the
Friedel oscillations do not appear� using a model with a finite
number of polarons.

As a result, we obtain the following upper bound to the
ground-state energy of an N-polaron system in a spherical
compensating background:
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Evar��N��� = EF��N��,w� −
mb

2
��2 − N�2���

j=1

N

x j
2�

S0

−
mb�2N2

2
�X2�S0

+ lim
�→�

1

�
��0�S0

+ �Ub�x̄��S0

+ EC + Ee-ph. �24�

The terms EC and Ee-ph arise from the Coulomb repulsion
between the electrons and the Fröhlich electron-phonon in-
teraction, and are discussed below. The first term EF�N ,w� is
the energy of N noninteracting fermionic oscillators with fre-
quency w:

w = 	�2 − N�2, �25�

EF��N��,w� = �w �
�=�1/2

��N� − NL�
��L� +

3

2
�

+ �
n=0

L�−1 �n +
3

2
�g�n�� , �26�

where L� is the lowest not fully occupied level for the N�

electrons with spin projection �. The energy levels of a 3D
oscillator are degenerate, and

g�n� =
1

2
�n + 1��n + 2� �27�

is the degeneracy of the nth energy level. The parameter

NL�
=

1

6
L��L� + 1��L� + 2� �28�

is the number of electrons at all fully filled levels. After some
algebra, in the Feynman units ��=1, mb=1, �LO=1� the
variational functional �24� takes the form

Evar��N��� =
�0

2 + w2

2w ��
�

F�N�� −
3

2�
+

3

4�1�2��1 + �2�
��1�2

3 + �1
3�2 + 3�1

2�2
2

+ �0
2�1�2 − 2�1�2

2w0 + �1�2w0
2 − 2�1

2�2w0

+ �0
2w0

2� + �Ub�x̄��S0
+ EC + Ee-ph, �29�

where the function F�N�� is given by

F�N�� =
1

8
L��L� + 1�2�L� + 2� + �N� − NL�

��L� +
3

2
� .

The term EC is the Coulomb contribution,

EC =
1

4�2

	2�

1 − 


 dq

1

q2 ��G�q,0�N+,N−���→� − N� with


 =
��

�0
,

and Ee-ph is the polaron contribution,

Ee-ph = −
	2�

4�2 
 dq
1

q2

0

�

d� e−��G�q,��N+,N−���→�,

where G�q ,� �N+ ,N−� is the dynamic two-point correlation
function for the electron density operators:

G�q,��N+,N−� = �	q���	−q�0��S0
.

This correlation function, for which the path integral calcu-
lation was developed in Ref. 21, was described in Ref. 13,
and factorizes as follows:

G�q,��N+,N−� = exp�−
q2D���

2N
�G̃�q,���N��,�� . �30�

Here, the function D��� is provided by the centers-of-mass
motion,

D��� = 2
�1

2 − w0
2

�1
2 − �2

2

sinh��1�/2�sinh��1��� − ��/2�
�1 sinh����1/2�

+ 2
w0

2 − �2
2

�1
2 − �2

2

sinh��2�/2�sinh��2��� − ��/2�
�2 sinh����2/2�

−
sinh�w�/2�sinh�w��� − ��/2�

w sinh���w/2�
, �31�

and G̃�q ,� � �N�� ,�� is the two-point correlation function for
the degrees of freedom of an N-polaron system describing
the motion of fermions relative to their center of mass,

G̃�q,���N��,�� = �
n,n�,�

��n�eiq·x�n���2ew��n−n���f1�n,��N�,��

− f2�n,�;n�,���N��,��� + �
n,�,n�,��

�n�eiq·x�n�


�n��eiq·x�n��f2�n,�;n�,����N��,�� , �32�

where �n�eiq·x�n�� is the one-electron matrix element,

�n�eiq·x�n�� =
 eiq·x�n
*�x��n��x�dx . �33�

�n�x� is the eigenfunction of a 3D oscillator with the fre-
quency �. The index n denotes the set n= �n , l ,m�, where n
is the number of the energy level, l is the quantum number of
the orbital angular momentum, and m is the quantum number
of the z projection of the orbital angular momentum, and
f1�n ,� �N� ,�� and f2�n ,� ;n� ,�� � �N�� ,�� are one-electron
and two-electron distribution functions for a canonical en-
semble of fermions described in detail in the Appendix of
Ref. 13.

Finally, the potential energy of electrons in a uniformly
charged background sphere with the radius R is found to be
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�Ub�x̄��S0
= −

	2�
N

��1 − 
���
�
n=0

�

f1�n,��N�,��


�
k=0

n
�− 1�k

k!
�n + 2

n − k
���k +

1

2
�



1

Ak+1/2� 1

2w
�k

1F1�k +
1

2
;
5

2
;−

R2

4A
� + Vbb,

�34�

with the parameter

A 

1

4N
� �1�2 + w0

2

�1�2��1 + �2�
+

N − 1

w
� . �35�

IV. DISCUSSION OF RESULTS

The minimization of the variational ground-state energy
with respect to the variational parameters has to be done
numerically. We discuss some of the most relevant results.
We have restricted the range of r

s
* in the figures to low and

intermediate values, where the contribution to the ground-
state energy owing to Wigner crystallization is presumably
small.

In Fig. 1, the ground-state energy per particle for an
N-polaron system in a quantum dot is plotted as a function of
the number of polarons, keeping constant values of the pa-
rameter r

s
* for two different cases: �i� the case of ZnO with

�=0.849 and 
=0.4908, and �ii� the case of a polar medium
with �=5, 
=0.3. In the insets, the total spin of an
N-polaron system in its ground state is represented as a func-
tion of N.

In an N-polaron quantum dot in ZnO for r
s
*=2 �which

corresponds to the density n0�4.34
1019 cm−3�, the shell
filling obeys Hund’s rule �see the inset to Fig. 1�a��. This
shell filling is manifested in the ground-state energy, where
the pronounced minima correspond to the closed shells �N
=2,8 ,20,40, . . . �, and weakly expressed minima correspond
to the half-filled shells �N=5,14,30,56, . . . �. In the case of
the medium with �=5, 
=0.3, for r

s
*=20 �which corre-

sponds to the density n0�1.14
1018 cm−3�, an N-polaron
system in its ground state has a maximal possible spin �see
the inset to Fig. 1�b��. As a result, the ground-state energy as
a function of N in Fig. 1 has kinks for N corresponding to the
closed shells for a spin-polarized N-polaron system with par-
allel spins �N=1,4 ,10,20,35, . . . �.

The polaron contribution to the ground-state energy can
be subdivided into two parts, which behave differently when
the number of fermions is increased. Indeed, the correlation
function given by Eq. �32� consists of two terms:

G̃�q,���N��,�� = G̃1�q,���N��,�� + G̃2�q,���N��,�� ,

�36�

with

G̃1�q,���N��,�� 
 �
n,n�,�

��n�eiq·x�n���2ew��n−n���f1�n,��N�,��

− f2�n,�;n�,���N��,��� , �37�

G̃2�q,���N��,�� 
 �
n,�,n�,��

�n�eiq·x�n�


�n��eiq·x�n��f2�n,�;n�,����N��,�� .

�38�

In accordance with Eq. �36�, we subdivide the Coulomb and
polaron contributions:

EC = EC
�1� + EC

�2�,

Ee-ph = Ee-ph
�1� + Ee-ph

�2� .

For sufficiently large N �in practice, already for N�5�, we
can with a high accuracy replace the two-electron distribu-
tion function by the product of one-electron distribution
functions,

(b)

(a)
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N
h

ω
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O
)

FIG. 1. �Color online� Polaron ground-state energy per particle
in an N-polaron quantum dot as a function of the number of fermi-
ons. The parameters are taken �a� for ZnO with �=0.849, �0

=8.15, ��=4.0, and ��LO=73.27 meV, and �b� for a polar medium
with �=5, 
=0.3, and ap=3 nm. The value of the parameter r

s
* is

�a� 2, which corresponds to the fermion density n0=4.34

1019 cm−3, and �b� 20, corresponding to n0=1.14
1018 cm−3.
The arrows indicate the number of fermions corresponding to the
closed and half-filled shells. Insets: The total spin of an N-polaron
system as a function of the number of fermions.
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f2�n,�;n�,����N��,�� � f1�n,��N�,��f1�n�,���N��,�� ,

�39�

which allows us to express G̃2�q ,� � �N�� ,�� as

G̃2�q,���N��,�� = �	q�����	−q�0�� = ��	q��2 �40�

and consequently

EC
�2� =

e2

4�2��

 dq

1

q2 ��	q��2.

This means that Eq. �38� represents the potential energy of
the direct Coulomb electron-electron interaction in the Cou-
lomb contribution. An analogous term occurs for the polaron
contribution:

Ee-ph
�2� = −

	2�

4�2 
 dq
1

q2 ��	q��2.

With increasing N at a fixed average electron density, the
magnitude of �	q� increases proportionally to N for suffi-
ciently large N. Therefore, the contributions EC

�2� and Ee-ph
�2�

under the same conditions increase proportionally to N2. In
the limit of large N, the leading terms of EC

�2� and of Ee-ph
�2� can

be determined if the electron density

n�r� =
1

�2��3 
 �	q�e−iq·rdq

is uniform inside the background-charge sphere: n�r�
=n0��R−r�. As a result, we obtain for these leading terms

�EC
�2��N�1 �

3

5

e2N2

��R
, �Ee-ph

�2� �N�1 � −
3

5

e2N2

�*R
,

where 1 /�*
1 /��−1 /�0. These terms are precisely com-
pensated by the leading term in the potential energy from the
background sphere, confirming the correct treatment of the
charge neutrality.

Within the approximation �39�, the term �37� is

�G̃1�q,���N��,���N�1

� �
n,n�,�

��eiq·x�nn��
2 exp� �

�
��n − �n��� f1�n,��N�,��


�1 − f1�n�,���N��,��� , �41�

so that �41� is a direct analog of the two-point correlation
function in bulk within the Hartree-Fock approximation:

��	q���	q�0���bulk,HF = �
k,k�

exp��� k2

2
−

�k��2

2
��


fk�1 − fk���k�,k−q. �42�

Therefore, in the “bulk limit” EC
�1� becomes the Coulomb

exchange energy, and Ee-ph
�1� becomes the polaron contribution

for a polaron gas in bulk.
In Fig. 2, we have plotted the polaron contributions

Ee-ph
�1� /N as a function of N for a quantum dot in ZnO and in

a polar medium with �=5, 
=0.3. In the insets, the spin of
the N-polaron system is represented as a function of the
number of fermions. As seen from Fig. 2�a�, the polaron
contribution Ee-ph

�1� /N in ZnO as a function of N oscillates,
taking maxima for N corresponding to the closed shells N
=2,8 ,20,40, . . . and for half-filled shells N=5,14,30,55. . ..
In the case of the medium with �=5, 
=0.3, for r

s
*=20

�corresponding to the density n0�1.14
1018 cm−3�, the po-
laron contribution Ee-ph

�1� /N oscillates, taking maximal values
at the fermion numbers which correspond to closed shells for
a spin-polarized system with parallel spins N
=1,4 ,10,20,35, . . ..

The dashed curves in Fig. 2 are the envelopes for the local
maxima �closed shells� and the local minima of Ee-ph

�1� /N, re-
spectively. When these envelopes are extrapolated to a larger
number of fermions, the distance between the envelopes de-
creases. Therefore, the magnitude of the variations of
Ee-ph

�1� /N related to the shell filling diminishes with increasing
N, and it is safe to suppose that, in the limit of large N, the
envelopes tend to each other at a value that corresponds to
the “bulk” limit limN→� �Ee-ph

�1� /N�.
In Fig. 3, the polaron ground-state energy E0 /N per par-

ticle is plotted as a function of the effective Wigner-Seitz
parameter r

s
* determined by Eq. �13� for different regimes:

for the weak-coupling regime with �=0.01 �Fig. 3�a��, for
the case of ZnO �Fig. 3�b��, and for a medium with �=5,

=0.3 �Fig. 3�c��. In the insets, the radius of the background
sphere R is represented as a function of the number of fer-
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FIG. 2. �Color online� Polaron contribution to the ground-state
energy per particle Ee-ph

�1� /N in an N-polaron quantum dot as a func-
tion of the number of fermions. The values of the parameters are the
same as those in Fig. 1.
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mions. For all considered values of r
s
*, the ground-state en-

ergy per particle varies only slightly with N for N�10. For a
sufficiently large number of particles, an N-polaron system in
a quantum dot thus reveals properties close to those for a
polaron gas in bulk. The short-dashed lines in Fig. 3 show
the one-polaron ground-state energy for a polaron in bulk
calculated within the Feynman path-integral variational
method.6 It appears that E0 /N as a function of r

s
* tends to a

finite �bulk� value of the ground-state energy at large r
s
*. For

N=1, this value analytically coincides with that obtained
within the Feynman method. For N�1, the limit of an
N-polaron energy per particle at r

s
*→� is slightly higher

than the Feynman one-polaron ground state energy �except in
the weak-coupling regime, Fig. 3�a��. This difference is due
to the fact that the model of Ref. 13 for N�1 in the limit
r

s
*→� differs from the Feynman model �N times repeated�

for a single polaron. In fact, the model applied in the present
approach and in Ref. 13 is equivalent to N electrons interact-
ing through an elastic bond with a single fictitious particle,
while the Feynman approach assumes an individual fictitious
particle for each electron. However, even for relatively high
values of r

s
*, the present approach provides lower ground-

state energies than those given by the single-polaron Feyn-
man theory. In the weak-coupling regime, the limit of an
N-polaron energy per particle at r

s
*→� coincides with the

one-polaron ground-state energy in bulk.
In Fig. 4, the polaron contribution Ee-ph

�1� /N to the ground
state energy per particle is represented as a function of r

s
*.

The polaron contribution Ee-ph
�1� /N for �=5, 
=0.3 �Fig. 4�b��

versus r
s
* has a discontinuity at r

s
*�6.4. The total spin as a

function of r
s
* for a quantum dot with �=5, 
=0.3 is shown

in the inset, which reveals that this discontinuity of the po-
laron contribution is related to a transition from the ground
state obeying Hund’s rule to the spin-polarized ground state
with parallel spins. In the regime governed by Hund’s rule,
the numbers of electrons N=10, 20, and 35 correspond to
different values of the total spin S=1, 0, and 3.5, respec-

tively. We see that those values of the total spin do not mono-
tonically increase with N. As a result, Ee-ph

�1� /N in the regime
governed by Hund’s rule is not a monotonically increasing
function of N. It is worth noting that the total ground-state
energy changes continuously with varying r

s
*, although par-

tial contributions can be discontinuous at the aforesaid tran-
sition.

In Fig. 5, the total ground-state energy and the polaron
contribution for a single polaron in a quantum dot are plotted
as a function of r

s
* determined by Eq. �13�. With increasing

r
s
*, the polaron ground-state energy in a quantum dot tends to

the ground-state energy of the Feynman polaron6 in bulk. It
should be noted that the dependence of the polaron ground-
state energy in a quantum dot on r

s
* is qualitatively similar to

that for a polaron gas in bulk8 even for a single polaron.
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FIG. 3. �Color online� Ground-state energy per particle of an N-polaron system in a quantum dot as a function of the parameter r
s
* for

different numbers of fermions. Insets: The radius of a background-charge sphere as a function of r
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*.
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In Figs. 6�a� and 6�b�, we plot the polaron ground-state
energy per particle and the polaron contribution Ee-ph

�1� /N cal-
culated within our variational path-integral method for dif-
ferent numbers of fermions, compared, respectively, with the
ground-state energy per particle and with the polaron contri-
bution for a polaron gas in bulk from Ref. 8. As seen from
Fig. 6, our all-coupling variational method provides lower
values for the ground-state energy and for the polaron con-
tribution than those obtained in Ref. 8. The difference be-
tween the polaron contribution calculated within our method
and that of Ref. 8 is smaller at low densities and increases in
magnitude with increasing density. Note that the ground-state
energy per polaron derived within our variational approach
for N polarons behaves as a function of density similarly to
that for the polaron gas in bulk as described in Ref. 8.

V. CONCLUSIONS

We have generalized Feynman’s treatment of a single po-
laron to an N-polaron system, taking into account fermion

statistics. The formalism was applied to a quantum dot with
a spherical neutralizing background, which we let grow in
size, keeping the electron density fixed. We thus obtain a
rigorous upper bound for the ground-state energy of N po-
larons, taking into account both the Fermi statistics and the
Coulomb interaction between fermions. The treatment of the
ground state energy is performed for both closed- and open-
shell systems. For a relatively low number �N�40� of po-
larons, the results for the ground-state energy already con-
verge to the bulk limit.
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